Androgen Receptor Gene Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance in Castration-Resistant Prostate Cancer.
نویسندگان
چکیده
PURPOSE Although novel agents targeting the androgen-androgen receptor (AR) axis have altered the treatment paradigm of metastatic castration-resistant prostate cancer (mCRPC), development of therapeutic resistance is inevitable. In this study, we examined whether AR gene aberrations detectable in circulating cell-free DNA (cfDNA) are associated with resistance to abiraterone acetate and enzalutamide in mCRPC patients. EXPERIMENTAL DESIGN Plasma was collected from 62 mCRPC patients ceasing abiraterone acetate (n = 29), enzalutamide (n = 19), or other agents (n = 14) due to disease progression. DNA was extracted and subjected to array comparative genomic hybridization (aCGH) for chromosome copy number analysis, and Roche 454 targeted next-generation sequencing of exon 8 in the AR. RESULTS On aCGH, AR amplification was significantly more common in patients progressing on enzalutamide than on abiraterone or other agents (53% vs. 17% vs. 21%, P = 0.02, χ(2)). Missense AR exon 8 mutations were detected in 11 of 62 patients (18%), including the first reported case of an F876L mutation in an enzalutamide-resistant patient and H874Y and T877A mutations in 7 abiraterone-resistant patients. In patients switched onto enzalutamide after cfDNA collection (n = 39), an AR gene aberration (copy number increase and/or an exon 8 mutation) in pretreatment cfDNA was associated with adverse outcomes, including lower rates of PSA decline ≥ 30% (P = 0.013, χ(2)) and shorter time to radiographic/clinical progression (P = 0.010, Cox proportional hazards regression). CONCLUSIONS AR gene aberrations in cfDNA are associated with resistance to enzalutamide and abiraterone in mCRPC. Our data illustrate that genomic analysis of cfDNA is a minimally invasive method for interrogating mechanisms of therapeutic resistance in mCRPC.
منابع مشابه
Personalized Medicine and Imaging Androgen Receptor Gene Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance in Castration-Resistant Prostate Cancer ArunA.Azad, StanislavV. Volik,AlexanderW.Wyatt,AnneHaegert, StephaneLeBihan,
Purpose: Although novel agents targeting the androgen– androgen receptor (AR) axis have altered the treatment paradigm ofmetastatic castration-resistant prostate cancer (mCRPC), development of therapeutic resistance is inevitable. In this study, we examined whether AR gene aberrations detectable in circulating cell-free DNA (cfDNA) are associated with resistance to abiraterone acetate and enzal...
متن کاملLncRNAs and miRNAs: potential biomarkers and therapeutic targets for prostate cancer.
Prostate cancer (PCa) is the second lethal disease for men in western countries. Although androgen receptor (AR) signaling has been widely investigated, noncoding RNAs (ncRNAs), deficient of open reading frame, have also received considerable attention. Growing studies showed that the aberrant ncRNAs expression contributed to cell proliferation, metastasis and drug resistance in PCa. Therefore,...
متن کاملAndrogen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer.
UNLABELLED Androgen deprivation therapy (ADT) is initially effective in treating metastatic prostate cancer, and secondary hormonal therapies are being tested to suppress androgen receptor (AR) reactivation in castration-resistant prostate cancer (CRPC). Despite variable responses to AR pathway inhibitors in CRPC, there are no reliable biomarkers to guide their application. Here, we used microf...
متن کاملProspects of estrogen receptor β activation in the treatment of castration-resistant prostate cancer
Advanced prostate cancer can develop into castration-resistant prostate cancer (CRPC). This process is mediated either by intratumoral ligand synthesis or by mutations or aberrations of the androgen receptor (AR) or its cofactors. To date, no curative therapy for CRPC is available, as AR-targeted therapies eventually result in the development of resistance. The human prostate cancer cell line V...
متن کاملSprouty2 loss‐induced IL6 drives castration‐resistant prostate cancer through scavenger receptor B1
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of treatment-resistant prostate cancer and poses significant therapeutic challenges. Deregulated receptor tyrosine kinase (RTK) signalling mediated by loss of tumour suppressor Sprouty2 (SPRY2) is associated with treatment resistance. Using pre-clinical human and murine mCRPC models, we show that SPRY2 deficiency leads to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2015